
www.manaraa.com

Data Management Challenges in

Cloud Computing Infrastructures ⋆

Divyakant Agrawal Amr El Abbadi Shyam Antony Sudipto Das

University of California, Santa Barbara

{agrawal, amr, shyam, sudipto}@cs.ucsb.edu

Abstract. The challenge of building consistent, available, and scalable data man-

agement systems capable of serving petabytes of data for millions of users has

confronted the data management research community as well as large internet

enterprises. Current proposed solutions to scalable data management, driven pri-

marily by prevalent application requirements, limit consistent access to only the

granularity of single objects, rows, or keys, thereby trading off consistency for

high scalability and availability. But the growing popularity of “cloud comput-

ing”, the resulting shift of a large number of internet applications to the cloud, and

the quest towards providing data management services in the cloud, has opened

up the challenge for designing data management systems that provide consis-

tency guarantees at a granularity larger than single rows and keys. In this paper,

we analyze the design choices that allowed modern scalable data management

systems to achieve orders of magnitude higher levels of scalability compared to

traditional databases. With this understanding, we highlight some design princi-

ples for systems providing scalable and consistent data management as a service

in the cloud.

1 Introduction

Scalable and consistent data management is a challenge that has confronted the database

research community for more than two decades. Historically, distributed database sys-

tems [15, 16] were the first generic solution that dealt with data not bounded to the

confines of a single machine while ensuring global serializability [2, 19]. This design

was not sustainable beyond a few machines due to the crippling effect on performance

caused by partial failures and synchronization overhead. As a result, most of these sys-

tems were never extensively used in industry. Recent years have therefore seen the

emergence of a different class of scalable data management systems such Google’s

Bigtable [5], PNUTS [6] from Yahoo!, Amazon’s Dynamo [7] and other similar but

undocumented systems. All of these systems deal with petabytes of data, serve on-

line requests with stringent latency and availability requirements, accommodate erratic

workloads, and run on cluster computing architectures; staking claims to the territories

used to be occupied by database systems.

One of the major contributing factors towards the scalability of these modern sys-

tems is the data model supported by these systems, which is a collection of key-value

⋆ This work is partially funded by NSF grant NSF IIS-0847925.

www.manaraa.com

2

pairs with consistent and atomic read and write operations only on single keys. Even

though a huge fraction of the present class of web-applications satisfy the constraints

of single key access [7, 18], a large class of modern Web 2.0 applications such as col-

laborative authoring, online multi-player games, social networking sites, etc, require

consistent access beyond single key semantics. As a result, modern key-value stores

cannot cater to these applications and have to rely on traditional database technologies

for storing their content, while scalable key-value stores drive the in-house applications

of the corporations that have designed these stores.

With the growing popularity of the “cloud computing” paradigm, many applications

are moving to the cloud. The elastic nature of resources and the pay as you go model

have broken the infrastructure barrier for new applications which can be easily tested

out without the need for huge upfront investments. The sporadic load characteristics of

these applications, coupled with increasing demand for data storage while guarantee-

ing round the clock availability, and varying degrees of consistency requirements pose

new challenges for data management in the cloud. These modern application demands

call for systems capable of providing scalable and consistent data management as a ser-

vice in the cloud. Amazon’s SimpleDB (http://aws.amazon.com/simpledb/) is a first step in

this direction, but is designed along the lines of the key-value stores like Bigtable and

hence does not provide consistent access to multiple objects. On the other hand, relying

on traditional databases available on commodity machine instances in the cloud result

in a scalability bottleneck for these applications, thereby defeating the scalability and

elasticity benefits of the cloud. As a result, there is a huge demand for data manage-

ment systems that can bridge the gap between scalable key-value stores and traditional

database systems.

At a very generic level, the goal of a scalable data management system is to sustain

performance and availability over a large data set without significant over-provisioning.

Resource utilization requirements demand that the system be highly dynamic. In Sec-

tion 2, we discuss the salient features of three major systems from Google, Yahoo!, and

Amazon. The design of these systems is interesting not only from the point of view of

what concepts they use but also what concepts they eschew. Careful analysis of these

systems is necessary to facilitate future work. The goal of this paper is to carefully an-

alyze these systems to identify the main design choices that have lent high scalability

to these systems, and to lay the foundations for designing the next generation of data

management systems serving the next generation of applications in the cloud.

2 Analyzing Present Scalable Systems

Abstractly, a distributed system can be modeled as a combination of two different com-

ponents. The system state, which is the distributed meta data critical for the proper

operation and the health of the system. This state requires stringent consistency guaran-

tees and fault-tolerance to ensure the proper functioning of the system in the presence of

different types of failures. But scalability is not a primary requirement for system state.

On the other hand is the application state, which is the application specific informa-

tion or data which these systems store. The consistency, scalability and availability of

the application state is dependent purely on the requirements of the type of application

www.manaraa.com

3

that the system aims to support, and different systems provide varying trade-offs be-

tween different attributes. In most cases, high scalability and high availability is given

a higher priority. Early attempts to design distributed databases in the late eighties and

early nineties made a design decision to treat both the system state and applications

state as a cohesive whole in a distributed environment. We contend that the decoupling

of the two states is the root cause for the high scalability of modern systems.

2.1 System State

We refer to the meta data and information required to correctly manage the distributed

system as the system state. In a distributed data management system, data is partitioned

to achieve scalability and replicated to achieve fault-tolerance. The system must have a

correct and consistent view of the mappings of partitions to nodes, and that of a partition

to its replicas. If there is a notion of the master amongst the replicas, the system must

also be aware of the location of the master at all times. Note that this information is

in no way linked to the data hosted by the system, rather it is required for the proper

operation of the entire system. Since this state is critical for operating the system, a

distributed system cannot afford any inconsistency or loss. In a more traditional context,

this corresponds to the system state in the sense of an operating systems which has a

global view about the state of the machine it is controlling.

Bigtable’s design [5] segregates the different parts of the system and provides ab-

stractions that simplify the design. There is no data replication at the Bigtable layer, so

there is no notion of replica master. The rest of Bigtable’s system state is maintained

in a separate component called Chubby [3]. The system state needs to be stored in a

consistent and fault-tolerant store, and Chubby [3] provides that abstraction. Chubby

guarantees fault-tolerance through log-based replication and consistency amongst the

replicas is guaranteed through a Paxos protocol [4]. The Paxos protocol [14] guarantees

safety in the presence of different types of failures and ensures that the replicas are all

consistent even when some replicas fail. But the high consistency comes at a cost: the

limited scalability of Chubby. Thus if a system makes too many calls to Chubby, per-

formance might suffer. But since the critical system meta data is considerably small and

usually cached, even Chubby being at the heart of a huge system does not hurt system

performance.

In PNUTS [6], there is no clear demarcation of the system state. Partition (or tablet)

mapping is maintained persistently by an entity called the tablet controller, which is a

single pair of active/standby servers. This entity also manages tablet relocation between

different servers. Note that since there is only one tablet controller, it might become a

bottleneck. Again, as with Chubby, an engineering solution to move the tablet controller

away from the data path, and caching of mappings is used. On the other hand, the map-

ping of tablets to its replicas is maintained by the Yahoo! Message Broker (YMB) which

acts as a fault-tolerant guaranteed delivery publish-subscribe system. Fault-tolerance in

YMB is achieved through replication – at a couple of nodes, to commit the change,

and more replicas are created gradually [6]. Again, better scalability is ensured through

limiting the number of nodes (say two in this case) requiring synchronization. The per-

record master information is stored as meta data for the record. Thus, the system state

in PNUTS is split between the tablet controller and the message broker.

www.manaraa.com

4

On the other hand, Amazon’s Dynamo [7] uses an approach similar to peer-to-peer

systems [17]. Partitioning of data is at a per-record granularity through consistent hash-

ing [13]. The key of a record is hashed to a space that forms a ring and is statically par-

titioned. Thus the location of a data item can be computed without storing any explicit

mapping of data to partitions. Replication is done at nodes that are neighbors of the

node to which a key hashes to, a node which also acts as a master (although Dynamo is

multi-master, as we will see later). Thus, Dynamo does not maintain a dynamic system

state with consistency guarantees, a design different compared to PNUTS or Bigtable.

Even though not in the same vein as scalable data management systems, Sinfonia [1]

is designed to provide an efficient platform for building distributed systems. Sinfonia [1]

can be used to efficiently design and implement systems such as distributed file systems.

The system state of the file system (e.g. the inodes) need to be maintained as well as

manipulated in a distributed setting, and Sinfonia provides efficient means for guaran-

teeing consistency of these critical operations. Sinfonia provides the minitransaction

abstraction, a light weight version of distributed transactions, supporting only a small

set of operations. The idea is to use a protocol similar to Two Phase Commit (2PC) [10]

for committing a transaction, and the actions of the transaction are piggy backed on the

messages sent out during the first phase. The light weight nature of minitransactions

allow the system to scale to hundreds of nodes, but the cost paid is a reduced set of

operations.

Thus, when it comes to critical system state, the designers of these scalable data

management systems rely on traditional mechanisms for ensuring consistency and fault-

tolerance, and are willing to compromise scalability. But this choice does not hurt the

system performance since this state is a very small fraction of the actual state (applica-

tion state comprises the majority of the state). In addition, another important distinction

of these systems is the number of nodes communicating to ensure the consistency of the

system state. In the case of Chubby and YMB, a commit for a general set of operations

is performed on a small set of participants (five and two respectively [3, 6]). On the

other hand, Sinfonia supports limited transactional semantics and hence can scale to a

larger number of nodes. This is in contrast to traditional distributed database systems,

which tried to make both ends meet, i.e., providing strong consistency guarantees for

both system state and application state over any number of nodes.

2.2 Application State

Distributed data management systems are designed to host large amounts of data for the

applications which these systems aim to support. We refer to this application specific

data as the application state. The application state is typically at least two to three

orders of magnitude larger than the system state, and the consistency, scalability, and

availability requirements vary based on the applications.

Data Model and its Implications. The distinguishing feature of the three main systems

we consider in this paper is their simple data model. The primary abstraction is a table

of items where each item is a key-value pair. The value can either be an uninterpreted

string (as in Dynamo), or can have structure (as in PNUTS and Bigtable). Atomicity

is supported at the granularity of a single item – i.e., atomic read/write and atomic

www.manaraa.com

5

read-modify-write are possible to only individual items and no guarantee is provided

across objects. It is a common observation that many operations are restricted to a single

entity, identifiable with a primary key. However, the disk centric nature of database

systems forces relatively small row lengths. Consequently, in a traditional relational

design, logical single entities have to be split into multiple rows in different tables. The

novelty of these systems lie in doing away with these assumptions, thus allowing very

large rows, and hence allowing the logical entity to be represented as a single physical

entity. Therefore, single-object atomic access is sufficient for many applications, and

transactional properties and the generality of traditional databases are considered an

overkill. These systems exploit this simplicity to achieve high scalability.

Restricting data accesses to a single-object results in a considerably simpler design.

It provides designers the flexibility of operating at a much finer granularity. In the pres-

ence of such restrictions, application level data manipulation is restricted to a single

compute node boundary and thus obviates the need for multi-node coordination and

synchronization using 2PC or Paxos, a design principle observed in [11]. As a result,

modern systems can scale to billions of data tuples using horizontal partitioning. The

logic behind such a design is that even though there can be potentially millions of re-

quests, the requests are generally distributed throughout the data set, and all requests

are limited to accesses to a single object or record. Essentially, these systems leverage

inter-request parallelism in their workloads. Once data has been distributed on multi-

ple hosts, the challenge becomes how to provide fault-tolerance and load distribution.

Different systems achieve this using different techniques such as replication, dynamic

partitioning, partition relocation and so on. In addition, the single key semantics of

modern applications have allowed data to be less correlated, thereby allowing modern

systems to tolerate the non-availability of certain portions of data. This is different from

traditional distributed databases that considered data as a cohesive whole.

Single Object Operations and Consistency. Once operations are limited to a single

key, providing single object consistency while ensuring scalability is tractable. If there

is no object level replication, all requests for an object arrive at a single node that hosts

the object. Even if the entire data set is partitioned across multiple hosts, the single key

nature of requests makes them limited to a single node. The system can now provide

operations such as atomic reads, atomic writes, and atomic read-modify-write.

Replication and Consistency. Most modern systems need to support per-object repli-

cation for high availability, and in some cases to improve the performance by distribut-

ing the load amongst the replicas. This complicates providing consistency guarantees,

as updates to an object need to be propagated to the replicas as well. Different systems

use different mechanisms to synchronize the replicas thereby providing different levels

of consistency such as eventual consistency [7], timeline consistency [6] and so on.

Availability. Traditional distributed databases considered the entire data as a cohesive

whole, and hence, non availability of a part of the data was deemed as non-availability of

the entire systems. But the single-object semantics of the modern applications have al-

lowed data to be less correlated. As a result, modern systems can tolerate non-availability

of certain portions of data, while still providing reasonable service to the rest of the data.

It must be noted that in traditional systems, the components were cohesively bound, and

www.manaraa.com

6

non-availability of a single component of the system resulted in the entire system be-

coming unavailable. On the other hand, modern systems are loosely coupled, and the

non-availability of certain portions of the system might not affect other parts of the sys-

tem. For example, if a partition is not available, then that does not affect the availability

of the rest of the systems, since all operations are single-object. Thus, even though the

system availability might be high, record level availability might be lower in the pres-

ence of failures.

2.3 The Systems

In Bigtable [5], a single node (referred to as tablet server) is assigned the responsibility

for part of the table (known as a tablet) and performs all accesses to the records assigned

to it. The application state is stored in the Google File System (GFS) [9] which provides

the abstraction of a scalable, consistent, fault-tolerant storage for user data. There is no

replication of user data inside Bigtable (all replication is handled at the GFS level),

hence it is by default single master. Bigtable also supports atomic read-modify-write

on single keys. Even though scans on a table are supported, they are best-effort without

providing any consistency guarantees.

PNUTS [6] was developed with the goal of providing efficient read access to ge-

ographically distributed clients while providing serial single-key writes. PNUTS per-

forms explicit replication to ensure fault-tolerance. The replicas are often geographi-

cally distributed, helping improve the performance of web applications attracting users

from different parts of the world. As noted earlier in Section 2.1, Yahoo! Message Bro-

ker (YMB), in addition to maintaining the system state, also aids in providing applica-

tion level guarantees by serializing all requests to the same key. PNUTS uses a single

master per record and the master can only process updates by publishing to a single bro-

ker, as a result providing single-object time line consistency where updates on a record

are applied in the same order to all the replicas [6]. Even though the system supports

multi-object operations such as range queries, no consistency guarantees are provided.

PNUTS allows the clients to specify their consistency requirements for reads: a read

that does not need the guaranteed latest version can be satisfied from a local copy and

hence has low latency, while reads with the desired level of freshness (including read

from latest version) are also supported but might result in higher latency.

Dynamo [7] was designed to be a highly scalable key-value store that is highly avail-

able to reads but particularly for writes. This system is designed to make progress even

in the presence of network partitions. The high write availability is achieved through an

asynchronous replication mechanism which acknowledges the write as soon as a small

number of replicas have written it. The write is eventually propagated to other repli-

cas. To further increase availability, there is no statically assigned coordinator (thereby

making this a multi master system), and thus, the single-object writes also do not have

a serial history. In the presence of failures, high availability is achieved at the cost of

lower consistency. Stated formally, Dynamo only guarantees eventual consistency, i.e.

all updates will be eventually delivered to all replicas, but with no guaranteed order. In

addition, Dynamo allows multiple divergent versions of the same record, and relies on

application level reconciliation based on vector clocks.

www.manaraa.com

7

2.4 Design Choices

So far in this section, our discussion focussed on the current design of major internet-

scale systems. We anticipate more such key-value based systems will be built in the

near future, perhaps as commodity platforms. In such cases, there are a few issues that

need to be carefully considered and considerable deviation from the current solutions

may be appropriate.

Structure of Value. Once the design decision to allow large values in key-value pairs

is made, the structure imposed on these values becomes critical. At one extreme, one

could treat the value as an opaque blob-like object, and applications are responsible for

semantic interpretation for read/writes. This is in fact the approach taken in Dynamo.

Presumably this suits the needs of Amazon’s workload but is too limited for a generic

data serving system. On the other hand, PNUTS provides a more traditional flat row like

structure. Again, the row can be pretty large and frequent schema changes are allowed

without compromising availability or performance. Also, rows may have many empty

columns as is typical for web workloads. In Bigtable, the schema consists of column

families and applications may use thousands of columns per family without altering the

main schema, effectively turning the value into a 2D structure. Other choices that should

be considered include restricting the number of columns, but allowing each column to

contain lists or more complex structures. This issue needs to be studied further since

the row design based on page size in no longer applicable, and hence more flexibility

for novel structures is available.

System Consistency Mechanism. As discussed earlier, maintaining consistency of the

system state is important for these systems. One obvious problem is to how to keep

track of each partition assignment and consensus based solutions seem to be a good

solution. But to add more features to the system, there is a need for reliable commu-

nication between partitions, e.g. supporting batched blind writes. PNUTS resorts to a

reliable message delivery system for this purpose and hence is able to support some fea-

tures such as key-remastering. This issue also needs further study since it might bring

unnecessary complexity and performance problems unless carefully designed.

Storage Decoupling. Given that data is partitioned with a separate server responsible

for operations on data within each partition, it is possible to store the data and run

the server on the same machine. Clearly this avoids a level of indirection. However

we think such close coupling between storage and servers is quite limiting since it

makes features such as secondary indexes very hard to implement and involves much

more data movement during partition splitting/merging. It would be better to follow a

design where data is replicated at the physical level with a level of indirection from the

server responsible for that partition. This is applicable even if there are geographically

separated logical replicas since each such replica can maintain local physical replicas

which would facilitate faster recovery by reducing the amount of data transfer across

data centers. This design will need some mechanism to ensure that servers are located

as close as possible to the actual data for efficiency while not being dependent on such

tight coupling.

Exposing Replicas. For systems which aim for availability or at least limited availabil-

ity in the face of network partitions, it makes sense to allow applications to be cognizant

www.manaraa.com

8

of the underlying replication mechanism. For systems, with limited availability, allow-

ing the application to specify freshness requirements allows easy load spreading as well

as limited availability. This is the case in both PNUTS and Dynamo. But in these set-

ting we think designers should strongly consider adding support for multi-versioning,

similar to that supported in Bigtable. These versions are created anyway as part of the

process and the design decision is to store them or not. Note that old versions are im-

mutable anyway and when storage servers are decoupled as discussed above, this allows

analysis applications to efficiently pull data without interfering with the online system

and also allowing time-travel analysis.

3 The Next Generation of Scalable Systems

In this section, we summarize the main design principles that allow key value stores

to have good scalability and elasticity properties. We then discuss the shortcomings of

such key value stores for modern and future applications, and lay the foundation for

discussion of design principles of the next generation of scalable data management sys-

tems supporting complex applications while providing scalable and consistent access to

data at a granularity large than single keys. The design of such stores is paramount for

the success of data rich applications hosted in the cloud.

3.1 Scalable Design Principles

In this section, we highlight some of the design choices that have lent scalability to the

key value stores:

– Segregate System and Application State. This is an important design decision

that allows dealing differently with different components of the system, rather than

viewing it as one cohesive whole. The system state is critical and needs stringent

consistency guarantees, but is orders of magnitude smaller than the application

state. On the other hand, the application state requires varying degrees of consis-

tency and operational flexibility, and hence can use different means for ensuring

these requirements.

– Limit interactions to a Single physical machine. Limiting operations to the con-

fines of a single physical machines lends the system the ability to horizontally parti-

tion and balance the load as well as data. In addition, failure of certain components

of the system does not affect the operation of the remaining components, and allows

for graceful degradation in the presence of failure. Additionally, this also obviates

distributed synchronization and the associated cost. This design principle has also

been articulated in [11] and forms the basis for scalable design.

– Limited distributed synchronization is practical. Systems such as Sinfonia [1]

and Chubby [3] (being used at the core of scalable systems such as Bigtable [5]

and GFS [9]) that rely on distributed synchronization protocols for providing con-

sistent data manipulation in a distributed system have demonstrated that distributed

synchronization, if used in a prudent manner, can be used in a scalable data man-

agement system. The system designs should limit distributed synchronization to the

minimum, but eliminating them altogether is not necessary for a scalable design.

www.manaraa.com

9

The above mentioned design principles will form the basis for the next generation

of scalable data stores.

3.2 Moving beyond Single Key semantics

A large class of current web-applications exhibit single key access patterns [7, 18], and

this is an important reason for the design of scalable data management systems that

guarantee single key atomic access. But a large number of present and future applica-

tions require scalable and consistent access to more than a single key. For example, let

us consider the example of an online casino game. Multiple players can join a game

instance, and the profiles of the participants in a game are linked together. Every profile

has an associated balance, and the balance of all players must be updated consistently

and atomically as the game proceeds. There can be possibly millions of similar inde-

pendent game instances which need to be supported by the system. Additionally, the

load characteristics of these applications can be hard to predict. Some of these appli-

cations might not be popular and hence have low load characteristics, while sudden

popularity of these applications can result in a sudden huge increase in the load on the

system [8, 12]. The cloud computing paradigm provides efficient means for providing

computation for these systems, and for dealing with erratic load patterns. But since these

applications cannot be supported by key value stores like Bigtable or Simple DB, they

have to rely on traditional databases, and traditional database servers running on com-

modity machine instances in the cloud often become a scalability bottleneck. A similar

scalability challenge is confronted by the movement of more and more web applications

to the cloud. Since a majority of the web applications are designed to be driven by tra-

ditional database software, their migration to the cloud results in running the database

servers on commodity hardware instead of premium enterprise database servers. Addi-

tionally, porting these applications to utilize key value stores is often not feasible due

to various technical as well as logistic reasons. Therefore, modern applications in the

cloud require a next generation data storage solution that can run efficiently on low

cost commodity hardware, while being able to support high data access workload and

provide consistency granularity and functionality at a higher granularity compared to

single key access.

3.3 Concluding Remarks

Among the primary reasons for the success of the cloud computing paradigm for utility

computing are elasticity, pay as you go model of payment, and use of commodity hard-

ware in a large scale to exploit the economies of scale. Therefore, the continued success

of the paradigm necessitates the design of a scalable and elastic system that can pro-

vide data management as a service. This system should efficiently and effectively run

on commodity hardware, while using the elasticity of the cloud to deal with the erratic

workloads of modern applications in the cloud, and provide varying degrees of consis-

tency and availability guarantees as per the application requirements. The spectrum of

data management systems has the scalable key value stores on one end, and flexible,

transactional, but not so scalable database systems on the other end. Providing efficient

data management to the wide variety of applications in the cloud requires bridging this

www.manaraa.com

10

gap with systems that can provide varying degrees of consistency and scalability. In this

paper, our goal was to lay the foundations of the design of such a system for managing

“clouded data”.

References

1. Aguilera, M.K., Merchant, A., Shah, M., Veitch, A., Karamanolis, C.: Sinfonia: a new

paradigm for building scalable distributed systems. In: SOSP. pp. 159–174 (2007)

2. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in

Database Systems. Addison Wesley, Reading, Massachusetts (1987)

3. Burrows, M.: The Chubby Lock Service for Loosely-Coupled Distributed Systems. In:

OSDI. pp. 335–350 (2006)

4. Chandra, T.D., Griesemer, R., Redstone, J.: Paxos made live: an engineering perspective. In:

PODC. pp. 398–407 (2007)

5. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,

Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for Structured Data. In:

OSDI. pp. 205–218 (2006)

6. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen,

H.A., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s hosted data serving platform.

Proc. VLDB Endow. 1(2), 1277–1288 (2008)

7. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Siva-

subramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-value

store. In: SOSP. pp. 205–220 (2007)

8. von Eicken, T.: Righscale Blog: Animoto’s Facebook Scale-up.

http://blog.rightscale.com/2008/04/23/animoto-facebook-scale-up/

(April 2008)

9. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. In: SOSP. pp. 29–43 (2003)

10. Gray, J.: Notes on data base operating systems. In: Operating Systems, An Advanced Course.

pp. 393–481. Springer-Verlag, London, UK (1978)

11. Helland, P.: Life beyond distributed transactions: an apostate’s opinion. In: CIDR. pp. 132–

141 (2007)

12. Hirsch, A.: Cool Facebook Application Game – Scrabulous – Facebook’s Scrabble.

http://www.makeuseof.com/tag/best-facebook-application-game-

scrabulous-facebooks-scrabble/ (2007)

13. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Consistent hash-

ing and random trees: distributed caching protocols for relieving hot spots on the world wide

web. In: STOC. pp. 654–663 (1997)

14. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169 (1998)

15. Lindsay, B.G., Haas, L.M., Mohan, C., Wilms, P.F., Yost, R.A.: Computation and communi-

cation in R*: a distributed database manager. ACM Trans. Comput. Syst. 2(1), 24–38 (1984)

16. Rothnie Jr., J.B., Bernstein, P.A., Fox, S., Goodman, N., Hammer, M., Landers, T.A., Reeve,

C.L., Shipman, D.W., Wong, E.: Introduction to a System for Distributed Databases (SDD-

1). ACM Trans. Database Syst. 5(1), 1–17 (1980)

17. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-

to-peer lookup service for internet applications. In: SIGCOMM. pp. 149–160 (2001)

18. Vogels, W.: Data access patterns in the amazon.com technology platform. In: VLDB. pp.

1–1. VLDB Endowment (2007)

19. Weikum, G., Vossen, G.: Transactional information systems: theory, algorithms, and the

practice of concurrency control and recovery. Morgan Kaufmann Publishers Inc. (2001)

http://blog.rightscale.com/2008/04/23/animoto- facebook-scale-up/

	Data Management Challenges in Cloud Computing Infrastructures
	 Divyakant Agrawal Amr El Abbadi Shyam Antony Sudipto Das
	Introduction
	Analyzing Present Scalable Systems
	System State
	Application State
	The Systems
	Design Choices

	The Next Generation of Scalable Systems
	Scalable Design Principles
	Moving beyond Single Key semantics
	Concluding Remarks

